Sphere Cone

The sphere-cone is a spherical section with a frustum or blunted cone attached. The sphere-cone's dynamic stability is typically better than that of a spherical section. With a sufficiently small half-angle and properly placed center of mass, a sphere-cone can provide aerodynamic stability from Keplerian entry to surface impact. (The "half-angle" is the angle between the cone's axis of rotational symmetry and its outer surface, and thus half the angle made by the cone's surface edges.)

The original American sphere-cone aeroshell was the Mk-2 RV which was developed in 1955 by the General Electric Corp. The Mk-2's design was derived from blunt-body theory and used a radiatively cooled thermal protection system (TPS) based upon a metallic heat shield (the different TPS types are later described in this article). The Mk-2 had significant defects as a weapon delivery system, i.e., it loitered too long in the upper atmosphere due to its lower ballistic coefficient and also trailed a stream of vaporized metal making it very visible to radar. These defects made the Mk-2 overly susceptible to anti-ballistic missile (ABM) systems. Consequently an alternative sphere-cone RV to the Mk-2 was developed by General Electric.

This new RV was the Mk-6 which used a non-metallic ablative TPS (nylon phenolic). This new TPS was so effective as a reentry heat shield that significantly reduced bluntness was possible. However, the Mk-6 was a huge RV with an entry mass of 3360 kg, a length of 3.1 meters and a half-angle of 12.5°. Subsequent advances in nuclear weapon and ablative TPS design allowed RVs to become significantly smaller with a further reduced bluntness ratio compared to the Mk-6. Since the 1960s, the sphere-cone has become the preferred geometry for modern ICBM RVs with typical half-angles being between 10° to 11°.

No comments:

Post a Comment